octimine technologies

DCDC (DC-to-DC) technology

Laura HorcajadaLaura Horcajada

Dc/dc switching regulator having reduced switching loss

A DC/DC switching regulator has a semiconductor switch coupled to an inductor, a first capacitor and a rectifier. A circuit to improve the switching efficiency of the semiconductor switch has a transmission gate coupled between the gate of the semiconductor switch and a second capacitor. The transmission gate is turned ON only when the gate of the semiconductor switch is about to make a positive or negative transition and isolated from the first and second voltage sources. A portion of the charge stored in the parasitic capacitance of the gate of the semiconductor switch can be stored in the second capacitor and reused to partially drive the semiconductor switch from the second to the first ON/OFF state. A further embodiment employs this technique with a synchronous rectifier in the regulator circuit.

Publication number: US6686729B1 | Search similar patents

Power conversion device for charging batteries


A power conversion device for charging first and second batteries is provided. The power conversion device includes an input unit converting a commercial alternating current (AC) power supplied from the outside into a direct current (DC) power to output the converted DC power, a first power conversion unit converting the DC power converted through the input unit into an AC power to output the converted AC power, a second power conversion unit converting the AC power converted through the first power conversion unit into a DC power to charge the first battery in a first operation mode, the second power conversion unit converting the DC power outputted through the first battery into an AC power in a second operation mode, a third power conversion unit converting the AC power converted through the second power conversion unit into a DC power to charge the second battery in the second operation mode, and a switching unit connecting the first power conversion unit to the second power conversion unit in the first operation mode according to a control signal supplied from the outside, the switching unit connecting the second power conversion unit to the third power conversion unit in the second operation mode according to the control signal supplied from the outside.

Publication number: EP2887491A1 | Search similar patents

Highly efficient rectifying and converting circuit for computer power

A power supply for producing a regulated dc output from an ac primary input incorporates a convention rectifying and filtering circuitry feeding a switching circuit for providing a high frequency, substantially rectangular voltage waveform to a high frequency transformer. The output of the transformer is provided to a synchronous buck converter having a grounded line and an ungrounded line, with a first FET switch in the ungrounded line and a second FET switch connected from the output of the first FET switch to the grounded line. A controller in the synchronous buck converter switches the FETs according to the input voltage waveform to achieve rectification. In another aspect, two FETs are placed in opposite polarity in the ungrounded line and switched together, and the controller also alters the duty cycle of the switching in accordance with the magnitude of a regulated output produced from the output of the synchronous buck converter, to achieve precise regulation. Power supplies are provided with multiple outputs of different regulated voltage, which may be externally enabled and disabled.

Publication number: EP0764297A1 | Search similar patents

Forward power converter with self-excited synchronous rectifying circuit

A forward power converter with a self-excited synchronous rectifying circuit makes use of the self-excitation function of a transformer to generate electric energy at a secondary side winding coil of the transformer, hence controlling an n-channel FET to accomplish synchronous rectification. In the synchronous rectifying circuit, the drain of the n-channel FET is connected to an end of the secondary side of a first transformer, the source of the n-channel FET is connected to a positive end of a flywheel diode, the negative end of the flywheel diode is connected to the other end of the secondary side of the first transformer, a control end of the n-channel FET is connected to an end of an induction coil via a resistor and a capacitor, and the other end of the induction coil is connected to the source of the n-channel FET.

Publication number: US2004196673A1 | Search similar patents

Systems and methods of auto-configurable switching/linear regulation

The systems and methods of auto-configurable switching/linear regulation disclosed herein enable a device to operate in both DC-to-DC switching regulation and linear regulation applications. The systems and methods disclosed herein differentiate between switching and linear mode. If the application is for a linear regulator, there will only be a capacitor on the output. If the application is for switching mode regulation, there will be an inductor and a capacitor on the output. Then based on the determination, the mode is selected and the hardware is converted into switching regulator operation or linear regulator operation.

Publication number: US2014111169A1 | Search similar patents

Synchronous rectifier type dc-to-dc converter in which a saturable

Disclosed is a synchronous rectifier type DC-to-DC converter capable of preventing an increase in losses occurring when a rectifier synchronous rectification switch and a flywheel synchronous rectification switch, which are responsible for rectification on the side of a secondary winding of a transformer, are turned on simultaneously, and the destruction of FETs or windings due to large currents. The DC-to-DC converter comprises a transformer, a primary switching device connected in series with a primary winding of the transformer, a control circuit for controlling turning on or off of the primary switching device, a rectifier synchronous rectification switching device, and a flywheel synchronous rectification switching device, and converts a voltage of a DC power source into another voltage. The DC-to-DC converter further comprises a rectifier rise delay inductive device connected in series with the rectifier synchronous rectification switching device and a flywheel rise delay inductive device connected in series with the flywheel synchronous rectification switching device.

Publication number: US5726869A | Search similar patents

Hybrid power supply system

In a hybrid power supply system which includes an electric double layer capacitor (10) having a pair of capacitor terminals (11 and 12), an energy storage (70a), and first and second bidirectional DC/DC converters (30a and 30b), the above-mentioned pair of capacitor terminals of the electric double layer capacitor are connected to a load (60a) through the first bidirectional DC/DC converter and are connected to the energy storage through the second bidirectional DC/DC converter.

Publication number: EP1366948A1 | Search similar patents

Dc to ac inverter with single-switch bipolar boost circuit

This invention improves the performance and lowers the cost of DC to AC inverters and the systems where these inverters are used. The performance enhancements are most valuable in renewable and distributed energy applications where high power conversion efficiencies are critical. The invention allows a variety of DC sources to provide power thru the inverter to the utility grid or directly to loads without a transformer and at very high power conversion efficiencies. The enabling technology is a novel boost converter stage that regulates the voltage for a following DC to AC converter stage and uses a single semiconductor switching device. The AC inverter output configuration is either single-phase or three-phase.

Publication number: US2004165408A1 | Search similar patents

Electrical circuit for delivering power to consumer electronic devices

An electrical circuit for providing electrical power for use in powering electronic devices is described herein. The electrical circuit includes a power converter circuit that is electrically coupled to an electrical power source for receiving alternating current (AC) input power from the electrical source and delivering direct current (DC) output power to an electronic device. The power converter circuit includes a transformer and a switching device coupled to a primary side of the transformer for delivering power from the electrical power source to a primary side of the transformer. A controller is coupled to a voltage sensor and the switching device for receiving the sensed voltage level from the voltage sensor and transmitting a control signal to the switching device to adjust the voltage level of power being delivered to the electronic device.

Publication number: US2014369084A1 | Search similar patents

Dc motor drive assembly including integrated

A drive assembly comprises a DC electric motor and an integrated charger/controller/regenerator which includes a power module, a step-up module and a control circuit. The input of the power module is connected to an electric power source during charging, and to the DC motor during regenerative braking. The input of the step-up module is connected to the power module, and the output is connected to the battery. The control circuit includes a switch, and has three modes of operation: driving, regenerative braking and charging. During driving, the switch connects the battery to the power module input and the power module output to the DC motor. During regenerative braking, the switch connects the DC motor to the power module input and the power module output to the step-up module input, and the step-up module output charges the battery. During charging, the switch connects the power module output to the step-up module input, and the step-up module output charges the battery.

Publication number: US5717303A | Search similar patents

Ac/dc converter comprising plural converters in cascade

The present invention relates to an AC/DC converter (1) of the type having an AC/DC conversion stage (2) and a DC/DC conversion stage (3), the AC/DC conversion stage (2) comprising an input filter stage (4), an input rectifier stage (5) and a tracking boost converter stage. The boost converter stage in turn comprises an input choke (10), a boost diode (16) and a bulk capacitor (17). The bulk capacitor (17) is arranged to store a range of voltages substantially proportional to the input voltage of the converter. The DC/DC stage (3) is arranged to receive the range of voltages from the bulk capacitor (17) and is controllable to provide a desired DC output regardless of the voltage received from the bulk capacitor (17). This is achieved through careful combination of components and use of output feedback control to control the voltage applied to an isolated transformer (41) in the DC/DC stage.

Publication number: EP1735901A1 | Search similar patents

High frequency switch-mode dc powered computer system

Method and apparatus are disclosed for providing a constant voltage, high frequency sinusoidal output across a varying load, using either a single or multiple switch topology operating at constant frequency while maintaining high efficiency over the entire load range. This embodiment is especially suited to applications which require the sinusoidal voltage be held very close to a desired value in the presence of rapid changes in the conductance of the load, even in the sub-microsecond time domain as is common in computer applications and the like and in powering electronics equipment, especially a distributed system and especially a system wherein low voltage at high current is required. Embodiments and sub elements provide energy storage for low voltage, high current electronic loads, an ability to supply current with rapid time variation, connection of the energy storage element to the electronic load through specially configured conductors designed to minimize the created magnetic field around said conductors, providing extremely low inductance connections, permitting larger energy storage elements to be utilized, permitting energy storage to be located relatively remotely from the powered electronic load, and a steady voltage from a transformer isolated, high frequency ac to dc converter under varying load without the necessity for feedback control, among other aspects. The addition of capacitors which interact with the leakage inductance of the transformer to produce a natural regulation condition is used and the relationship between the value of the leakage inductance of the transformer and that of the added capacitances is different from the condition of resonance at the operating frequency.

Publication number: EP1171946A1 | Search similar patents

Engine generator

An engine generator, sufficiently meeting a demand for a simple configuration and easy control, is provided. The output of a generator (1) connected to an engine (2) is output through a rectifier circuit (3) and an inverter (4). The generator (1) is a dual-purpose generator both for a generator function and for an electric motor function, and is driven by a drive inverter as an engine starting electric motor. ADC-DC converter (5) is provided between the output side of the rectifier circuit (3) and the output terminal of a battery (6). The generator (1) is driven as an engine starting electric motor, using the battery (6) as a power supply, when the engine is started.

Publication number: EP1458076A2 | Search similar patents

Method and system for bridgeless AC-DC converter

An AC-DC converter configured to convert an input AC signal to an output DC signal is disclosed. The AC-DC converter includes an inductor and first and second transistors, where the inductor and first and second transistors are connected in series with one another. The input AC signal is applied across the series connected inductor and first and second transistors, and the series connected inductor and first and second transistors is configured to generate a secondary AC signal based on the AC input signal. The AC-DC converter also includes a rectifier, configured to rectify a signal based on the secondary AC signal to generate a substantially DC output signal based on the AC input signal.

Publication number: US2016190954A1 | Search similar patents

Active gate clamp circuit for self driven synchronous rectifiers

A DC-DC converter circuit includes a transformer with a resonate filter or snubber connected at a primary side and a switch for controlling operation of the converter. A secondary side of the transformer includes self-driven synchronous rectifiers (64,66) and an output filter. Transistors (58,60) are provided at the gate leads of the rectifiers and themselves are provided with a fixed voltage (62) at their gates so as to clamp the peak voltages across to the rectifiers.

Publication number: EP1229635A2 | Search similar patents

Start your free patent search now.

+49 89 8091 2947 | contact@octimine.com | © octimine technologies GmbH, 2017